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Symbols and Abbreviations

AFE Aeroassist Flight Experiment

CFD computational fluid dynamics

CW continuous wave

CWG circular waveguide

d distance between aperture plane and reflecting plate, cm

D diameter of antenna aperture, cm

I_ diameter of conical horn aperture, cm

De effective diameter of conical horn aperture on ground plane, cm

dB decibel

1_ far-field range (d = 2D2/_), cm

GEO geosynchronous Earth orbit

GHz gigahertz
LEO low Earth orbit

L attenuation loss, dB

MRIS Microwave Reflectometer Ionization Sensor

NASA National Aeronautics and Space Administration

Pf forward power in directional coupler, dB

Pr reverse power in directional coupler, dB

RAM Radio Attenuation Measurements experiments

RCG reaction cured glass

RF radio-frequc'ncy

STS Space Transportation System

TPS thermal protection system

I FI magnitude of the power rellection-coefficient, dB

aperture phase deviation, dog.

wavelength at 24 Gltz (1.249 cm)
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Monostatlc reflection-coefflcient magnitude, ]r ], measurements

" occurring between a radiating horn and a metal (aluminum) reflecting plate

are presented for three 2.2 _, diameter conical horn antennas. The variable

element between the three horns is the aperture phase deviation, which

varies from 6 ° to 125 °. Measurements of IF [ as a function of horn-plate

separation distance (or range) extend from an antenna aperture short (fl = 0)
to beyond the far-field boundary (fl = 2D2/_,), where I) is the antenna

diameter. Comparative measurement data are presented with varying

intermediate physical environments for each of the horns. These physical

environments are horn antenna with and without the use of a ground plane,

with and without an intermediate dielectric material covering the horn

aperture, and with varying angles of tilt Ibr the metal plate.

The measured scalar data from the conical horns with various aperture

phase deviations, mounted on finite ground planes, are compared with data

from a theoretical model that uses a circular waveguide aperture with zero
phase deviation mounted on an infinite ground plane. The measured scalar
data from the conical horns, with and without the use of a ground plane, are

also compa{-ed to a scalar diffraction theory model.

This work was perlbrmed in support of an effort to develop a

multifrequency microwave reflectometer, to be flown on a space vehicle,

that would accurately determine the distance from the vehicle surface to a

reflecting plasma boundary. A metal reflecting plate was used in this work

to simulate RF reflectivity from a critically dense plasma. This resulted in a

strong interaction between the ground plane mounted aperture and the

reflecting plate at integral hall-wavelength separations for a variety of test
conditions.



2.0 Introduction

2,,1 B_¢.kground

The Aeroassist Flight Experiment (AFE) was a National Aeronautics and

Space Administration (NASA) research program to investigate and validate

atmospheric braking for a spacecraft returning to the Earth's atmosphere.

The AFE spacecraft would be placed in orbit from the Space Transportation

System (STS) and then accelerated to reenter the Earth's atmosphere at

geosynchronous Earth orbit (GEO) return velocities. The AFE spacecraft

would then use the atmosphere for aerodynamic braking in order to obtain

low Earth orbit (LEO) velocities. To improve future aerobrake design,

accurate heating rate data would have to be collected during the AFE

aerobraking maneuvers. A series of onboard experiments were proposed

and selected to aid in the validation of the most current computational fluid

dynamics (CFD) codes that are used to predict stagnation region heating

rates for all reentry spacecraft, including aerobrakes.

2.2 MRIS

The Microwave Reflectometer Ionization Sensor (MRIS) was one of the

AFE experiments. Previous experience (ref. 1) using continuous wave (CW)

microwave reflectometcrs during successful reentry plasma diagnostic flight

experiments on the Radio Attenuation Measurement (RAM) series of

vehicles was the basis for the MRIS proposed experiment. The total flight
regime for the AFE spacecraft, however, would impose more severe flight

and measurement constraints upon the MRIS than were imposed upon the

RAM reflectometer instrument. The MRIS was a four-frequency, stepped-

frequency millimeter wave reflectometer instrument with sensor antennas

located under the Thermal Protection System (TPS) tile in the AFE vehicle's

stagnation region. The four center-frequencies were 20, 44, 95, and 140

GHz. with frequency stepping occurring over a 4 GHz bandwidth for each

center frequency. The MRIS instrument's purpose was to measure, as a

function of frequency and aerobrake trajectory, the distance to the critical

electron density from the vehicle's surface and the magnitude of the
reflection from the critical electron density. In parallel with the
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development of the MRIS instrument, an ongoing series of experimental

laboratory studies were conducted to investigate potential problem areas for

the instrument and to provide confidence in the performance

" characteristics of the fllght-instrument configuration.

2,3 Present Work

Experimental laboratory studies were initially made in 1988 during a

feasibility study to demonstrate the ability to make the distance

measurement with the required accuracy [ref. 2). During these studies,

standoff distance measurements were made using a metal reflecting plate to

simulate a fully reflecting (critically dense) and lossless plasma. The use of

metal reflecting surfaces to experimentally simulate plasma reflectance has

been previously established (rcfs. 3-6). A theoretical analysis has been

developed (ref. 7) that is capable of calculating the mutual coupling between

two circular waveguide (CWG) apertures facing a fiat metal surface with

intervening homogenous dielectric layers. Thus, antenna apertures

mounted in a ground plane with the apertures covered by a TPS and an

ionized medium adjacent to the tile could be readily modeled. However,

this model makes several idealizing assumptions that are not met in actual

systems. The ground plane, dielectric layers, and the reflecting surfaces are

assumed to have infinite planar dimensions, and the antenna apertures are

assumed to have zero phase curvature or zero phase deviation. Since conical

horn antennas were specified for the MRIS, laboratory experiments were

devised to allow comparison of laboratory results using conical horns with

the CWG model predictions. A scalar diffraction theory near-field model

developed by R. W. Kreutel (MRIS Antenna Design, A Status Report,

Electromagnetic Sciences, In(:., Norcross, Ga., Contract NAS1-19063, July

16, 1990) was available for predicting the signal power returned to the
MRIS receiver from reflections in the antenna near-field. This model takes

into account the range to the reflecting plate, the aperture diameter, and

the aperture phase deviation of a given conical horn, but does not account

, for the effects of the parallel plate waveguide formed by the ground plane

and reflecting plate. This near-field model approaches the Friis

. transmission equation or far-field equation near 2D2/Z.. Complementary

swept-frequency and CW reflection-coefficient measurements were
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conducted for conical horn antennas mounted on a finite dimension ground

plane In proximity to a finite dimension parallel reflecting plate. From the

CW measurements, the effects of antenna aperture phase deviation and

aperture efficiency were experimentally determined. The experimental

swept-frequency measurements (not reported on here) provided complex

reflection-coefficient data as a function of frequency and plate separation ,
distances.

The CW experimental results are the subject of this memorandum and

extend the plate separation distances of previous work (refs. 3, 5, and 6) to

distances greater than 4.5 _,. Also, the experimental data are essentially

continuous as a function of plate separation distances rather than a series of

discrete data points.

The purpose of this memorandum is to document the experimental CW

results for three 2.2 _, conical horns with aperture phase deviations of 6 °,

23 °. and 125 °. Measurements of the magnitude of the reflection coefficient
for each of the three 2.2 _, antennas are presented as a function of plate

separation distances, Each antenna was independently measured with and

without a ground plane. Measurements were also made with and without a

TPS tile over the aperture. The effects of possible plasma tilt on the

magnitude of the reflection coefficient were experimentally determined by

tilting the metal plate, which was normally parallel to the aperture plane.

3.0 Experimental System Configuration

For the laboratory evaluation of the MR1S concept that preceded the

physical development of the flight instrument, it was not practical to test

the actual flight component configurations. Therefore, representative

components had to be chosen for simulated testing. In order to
characterize the near-field to far-field behavior of conical horn antennas

providing an order-of-magnitude frequency coverage for the MRIS on the

AFE spacecraft, a representative frequency and a typical family of conical

horns were selected for laboratory testing and evaluation. Availability of

testing and measurement components resulted in a frequency choice of
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24 GHz. Representative horn diameters for evaluation, based on typical I)/_.

values for the MRIS, resulted in a choice of 1.00 in. (2.54 cm) and 2.25 in.

(5.72 cm). For the horn diameters thus selected for testing, a wide range of

values for the aperture phase deviation was also chosen. The values chosen

for the aperture phase deviation were 6°, 23 °, and 125 °. The aperture

diameters and the phase deviations thus selected were based on normal

engineering design considerations, such as physical similarity of test

antennas to the actual flight antennas, frequency scaling, imposed physical

constraints, and budgetary constraints. For brevity, only the laboratory

measurement results of the 1.00 in. (2.54 cm) diameter apertures will be

presented and discussed in this report. It is anticipated that a forthcoming

report will address the nleasurement results for the larger diameter horns.

The CW reflectometer system shown in figure 1 was used to monitor

and record the transmitted and received power. The other components

used in the laboratory evaluation system included the antenna ground plane

and reflecting plate, tile TPS tiles, and the plate-positioning and vibration

isolation systems. Details of all of the aforementioned pertinent components

involved in the laboratory measurements are given in the following sections

(3.1-3.5).

3.1 Reflectometer and Measurement Circuit

The 24 GHz reflectometer measurement circuit is shown in block

diagram form in figure 2. All of the 24 Gtlz components were waveguide

connected. A Gunn diode oscillator/isolator provided 100 milliwatts of

power, with 30 decibels (dB) of isolation. A level-set attenuator (not shown

in fig. 2) was used to adjust the power delivered to the antenna under test so

that a power reflection coefficient of unity would produce full-scale

deflection on the power monitors. "IYansmitted, or forward, power level was

monitored through the -20 dB forward directional coupler, while the

reflected or return power was monitored through the -6 dB reverse or

return directional coupler. The precision attenuator that was permanently

, connected between the forward and return directional couplers was used to

calibrate the measurement system (on a daily basis) in terms of the recorded

" power ratio in dB, between the transmitted and reflected power. This



power ratio, or power reflection coefficient, had a nominal measurement
range of 0 to -35 dB.

Again, referring to figures 1 and 2, the forward and return power levels

are sensed by frequency calibrated thermistor type power sensors and then

converted into analog form for meter deflection and/or recording. For these

measurements, the reflected power output was connected to a logarithmic

voltage converter which provided an output voltage proportional to the

logarithm of the power input. This voltage was recorded on an X-Y

recorder, as a function of separation distance between the horn aperture

plane and the reflecting plate.

3.2 Antennas

Since conical horn antennas were specified for the MRIS aperture,

emphasis was given to laboratory testing and evaluation of representative

flight reliable horns. As stated earlier, two diameters were selected for the

apertures of the conical horns to be tested. For each aperture diameter,

three aperture phase deviations were selected.

Table I identifies and gives an overall physical description for the

1.00 in. diameter antennas. Although all of the horn antennas had identical

aperture diameters (Da) of 1.00 in., the method of mounting the horns in

the ground plane extended the cones and, due to different internal flare

angles, resulted in slight differences in the effective (or actual) aperture

diameters (De) at the ground plane. These diameters are given in Table 1

under the heading, Aperture Diameter, Effective.

3'3 Ground Plane and Reflecting Plate

Engineering design and necessity dictated that the antennas for the

MRIS be physically mounted on the/WE vehicle's outer aluminum surface.

The antenna apertures would be mounted flush with the metallic skin.

Thus, the metallic skin of the AFE vehicle would provide a large ground

plane for the MRIS antennas.
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The highly reflective aspect of an overdense, electron-formed plasma

layer to impinging RF energy can be simulated easily and inexpensively in

the laboratory by the use of a metal reflecting surface (refs. 3-6). Therefore,

" for laboratory testing, a fiat metal plate was chosen to provide the antenna

ground plane, and a fiat metal plate was also chosen to simulate the high RF
0,

reflection characteristics of the plasma.

The laboratory test fixture configuration is designed to simulate an
MRIS conical horn antenna mounted on the AFE aerobrake with the

acrobrake enveloped by a highly reflective plasma. This is accomplished by

mounting the conical horn under test on a flat plate and measuring the

magnitude of the RF reflection from an adjacent parallel flat plate. The

measurements are made over a broad range of plate separation distances

which span the range of distances in the plasma where total reflection is

expected. To develop other laboratory measurement techniques (such as

reflectometer measurements in an arc-jet facility) and to simulate AFE flight

conditions (plasma generation) would not have been feasible considering the

imposed budget constraints, availability of appropriate plasma-generating

testing facilities, etc.

The decisions to use flat metal plates ibr system testing and the

subsequent choice of plate dimensions were based on past practical

experience and evidence in related experimental programs (refs. 3-6).

Plates with large dimensions, in terms of electrical wavelength, could be

more closely related to theoretical models where the plate dimensions were
infinite.

The antenna ground plane and the reflecting plate were designed and
fabricated with careful attention to surface finish and overall flatness. The

surface finish for the plates was less than 32 micro-inches (0.00008 cm)

and the overall surface flatness was less than 0.005 in. (0.0127 cm). Both

plates were square with 18 in. (45.7 cm) sides. Overall dimensions in terms

of electrical wavelengths were 36.6 ;k per side. Antenna-to-plate attachment

was accomplished with the antenna mechanical boresite perpendicular to

the ground plane.
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3,4 Thermal Protection System (TPS} T.iles

A thermal protection system, similar to that used for the STS, was also

employed to protect the integrity of the AFE aerobrake vehicle during the

high enthalpy (high heating rate) portion of atmospheric reentry.
i

Like the STS system, the AFE TPS utilizes individual tiles to cover the

exterior surfaces of the vehicle. To protect the waveguide-fed conical horn

antennas on the AFE spacecraft from the extremes of temperature or from

plasma contaminants, the antenna apertures had to be covered either with a

lens or a window. In order to transmit RF information through a tile, a

design decision had to be made either to cut an opening through the tile or

to use the unaltered tile as a dielectric covering for the antennas. The latter

choice was adopted. This necessitated a study of the RF characteristics of

the tile material under simulated flight-type conditions. The room

temperature tests described in this paper, using the TPS tile, were a part of

the overall TPS study which included a high-temperature RF evaluation of

the tile materials' transmission characteristics. The TPS study is

documented by G. G. lteil in High Temperature Electromagnetic

Characterization of Thern lal Protection System Tile Materials (McDonnell

Aircraft Co., St. Louis, Mo., Report No. MDC92B0034, Contract NAS1-18763,

June 1992).

A representative TPS tile was used for the experiments described in

this paper. The tile was a Lockheed LI-2200 silica-based material with a

density of about 22 lbs/ft 3 (0.35 g/ec). Dimensional characteristics for the

tile are shown in figure 3. The overall size of the tile used was 6.0 in.

(15.24 cm) by 8.0 in. (20.32 cm). As shown in the figure, the outer exposed

surfaces of the tile were covered by a reaction cured glass (RCG) coating

with a thickness of about 0.010 in. [0.025 cm). The most recent values for

the electromagnetic properties of the tile materials at room temperature

conditions (based on the TPS study results) are as follows: for the RCG

coating, the relative permittivity was equal to 3.875 - j0.04; for the bulk tile

material composing the core of the tile, the relative permittivity was equal

to 1.335 - j0.003.
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3,5 Plate Positioning System

A two-dimension positioning system, driven by stepper-motors, was
• used to position and control tile distance and the relative angle between the

antenna ground plane and the reflecting plate during measurements. The
accuracy for the distance positioning was + 0.0001 ln./in.
(+ 2.5 microns/25 mm) and the accuracy for the tilt positioning was 3 arc

mln. As shown In figure 1. the entire measurement configuration including
the microwave measurement system and the plate positioning system, was
Installed on an optical-type Isolation table to eliminate the coupling of
physical vibrations Into the plate system. At a fixed or variable plate
separation distance, small physical vibrations occurring between the plates
could produce sizable oscillations in the amplitude of the measured signal.

The Isolation table was highly eflectlve, and no amplitude variations in the
measured data were due to plate vibrations.

Measurements were conducted with the antenna ground plane mounted

in a fixed position on the optical table. The reflecting plate was movable in

two dimensions, allowing either the separation distance between the plates

or the relative angle of tilt between the plates to be varied. For range

{distance) measurements, the plates were parallel. Angular (tilt)

measurements were referenced to the parallel alignment of the plates.

The controller/stepper-motor could increase the plate separation in
0.0001 cm steps as a function of time. at rates of 0.0001 cm {1 step) per
second to 10.0 cm (100,000 stepsl per second. The rates selected here

were 0.001 cm (10 stcrpsl per second and 0.01 cm (100 steps) per second.
i The slower rate was used to provide a check to determine if the limited

frequency response of the output recording device was affecting the data.
The rates chosen for the plate-tilt measurements were 0.0167 ° (10 steps)

per second and 0.167" (100 steps) per second.
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4,0 Experimental Measurements and Discussion

Reflection-coefficient magnitude measurements for the 2.1 _. - 2.2 _,

diameter conical horns are presented for the three horns. Table 1 provides

Individual horn identification as well as pertinent electrical and physical

characteristics for each of the horns tested. The horn antennas are

Identified as horn B, D, and C and are listed in order of decreasing aperture

phase deviations: 125 °, 22.5 °, and 6°. A physical comparison of the three

homs can be seen in figure 4. Each of the experimental horns is mounted

on a ground plane; except for minor differences in aperture diameters, the

main physical differences between the horns are the taper lengths. The

lengths noted in the figure are the taper lengths, that is, the axial distance

from the aperture plane to the plane of the circular waveguide transition of

the antenna feed. Also shown in figure 4, for comparison, is a pictorial

representation of the theoretical CWG model antenna.

Comparison measurements of If" I, in dB, are presented in sections 4.1-

4.8 and are shown as functions of distance to the reflecting plate (also stated

as range distance or separation distance) and/or tilt angle of the reflecting

plate. Measurements are presented for the horns listed in Table 1, as

illustrated in figure 4. The data sets compare the various physical

configurations used in the measurements, such as the comparison between

conical horn apertures contained on a ground plane, and the same conical

horn aperture without a ground plane. For each of the above conditions,

measured data are presented both with and without the presence of an
intermediate TPS tile.

4.1 Range Measurements

4.1.1 With Ground Plane, Without TPS Tile

Measurements of If" Iversus plate separation distance for each conical

horn (B, D, and C) mounted on a gnmnd plane, without an intermediate TPS

tile, are shown in figures 5, 6, and 7. For these measurements, the

reflecting plate was moved from an aperture shorted condition (0 cm) to a

separation distance of 20 cm. In each figure, the resultant IF I can be seen
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to vary with distance with a periodicity of _./2 between maximums. An

overall comparison of [F Iversus range in figures 5, 6, and 7 shows that the

data from the different horns is very similar. With the exception of the

close-in range (0 < d < FF) for horn B, as shown in figure 5, the peak

magnitudes have nearly identical I F Ivalues as a function of range distance.

From the figures it is obvious that the main difference between the three

cases is the degree of the rapid magnitude versus distance variations in IF I

when IF l is small. These variations are attributed to parallel-plate waveguide

propagation and edge effects and are the subject of further study. For

purposes of the MRIS measurements it was desirable to obtain a return

signal from the reflecting plate with a magnitude as large as possible. While

parallel-plate propagation is related to plate separation, the small variations
in IF [due to this effect are €letrimental to the measurement of plate

separation by the method used in the MRIS experiment. Referring to

figures 5-7, for range distances greater than the far-field boundary (FF)

where (FF < d < 20 cm), it appears that the antenna with the larger aperture

phase deviation has less severe [ F [variation in the null region.

Expanded time-base measurements made at selected ranges within

figures 5-7 are presented in figures 8-10. The calculated far-field boundary

(2I)2/_.) is given in part (b) of the figures tbr each of the apertures. Thus, in

figure 8, for horn B the FF is 12 cm. In parts (a) and (c) of figure 8, the

selected ranges are near FF/2 (6.0 cm) and 3FF/2 (18 cm), respectively.

The same reasoning was used to establish the range values given in figures 9

and 10. The reason for choosing range blocks of 2 cm about the selected
ranges was to show the effect of several continuous _,/2 distance increments.

As in the 0-20 cm ranges shown in figures 5-7, the cyclic behavior can

be readily seen in figures 8-I0, where the maximums occur for every _./2 of

plate separation. There are several distinguishing features between data

contained in the three graphs. First, notice the increasing sharpness of the

maximum peaks as distance is increased from (a) to (b) to (c). This is

consistent with theoretical results (ref. 3, p. 20). Notice the increasing

amplitude variation within the regions between the X/2 peaks, as the plate

distance is increased IYom {a) to (b) to (c). This may be due to the fact that

more propagating modes exist as the spacing between the plates is

:_ I I



increased. Again, comparing (a) to (b) to (c), the number (or frequency) of

the smaller variations between Z./2 peaks decreases as the plate distance is

increased. A physical interpretation of this behavior is that the electrical

length of the open-ended waveguide formed by the parallel plates decreases m

as plate spacing is increased and is most sensitive to plate spacing

immediately after the onset of a new propagating mode, because of the

relationship of group velocity in the guide to the plate spacing (ref. 8). This
is consistent with the observed behavior.

Similar to the overall comparison between figures 5-7 described above,

an overall comparison between figures 8-10 reveals many similarities in [F[

as a function of the FF range. The major difference between the figures is

the relative sharpness (relative slope with increasing distance) of the IF [

data immediately before it peaks. The [l" Idata for horn B, in figure 8,

appears much sharper than that for either of the other horns. For homs D

and C, In figures 9 and 10, respectively, the IF [data as a function of FF range

appear almost identical. A fully theoretical explanation for this behavior was

not developed.

4.1.2 With Ground Plane, With TPS "rile

Figures I 1-16 are measurements of I F lwith a TPS tile spaced 0.160 in.

(0.406 cm) from the ground plane, as is tile case of the AFE aerobrake

where each tile is attached to the vehicle's surface by a 0.160 in. layer of

strain relief material. The strain relief layer was omitted here because it was

excluded in the imnlediate neighborhood of the MRIS antenna apertures in

the flight configuration on the AFE vehicle. (in the flight configuration, the

presence of the lossy strain relief layer in the vicinity of the apertures could

be expected to somewhat mitigate the effects of the metal groundplane, thus

this experimental configuration can be considered a worst case for ground

plane effects.) The reflecting plate separation distance as shown in figures

11-16 are always given with respect to the antenna aperture plane although

the closest possible plate-to-plate spacing is 1.255 in. (3.1877 cm).

The character of the [F Idata with the TPS tile present, shown in

figures 11-16, are quite different from those without the tile (shown in figs.

12



5-I0). The tile significantly reduces the corresponding peak amplitudes of

IF Lparticularly with _ = 125 °. In addition, the cyclic 3./2 behavior is not as

well defined as in figures 5-I0. Also, the depths of the nulls are much lower

" with the tile, and although the null depth excursions appear to be periodic,

they vary more erratically with small changes in distance.

Large values for [I" I mean, by definition, a poorer impedance match

between the radiating antenna and its surrounding medium. Conversely,

small values for II" I mean that the impedance match improves between the

radiating antenna and its surrounding medium, thus, allowing more energy

to escape the antenna aperture and the ground-plane to reflecting medium

system (TPS tile and reflecting plate). With the above discussion in mind, it

appears that the addition of the TPS tile between the ground plane and

reflecting plate increases radiation. It is also obvious, by comparing figures

8-10 with those of figures 14-16, that the use of TPS tile spreads the peak

energy returns more uniformly across the 2-cm range block. This is

evidence of the effects of multiple internal and external reflections caused

primarily by the RCG coating on the tile. The internal reflections (those

occurring between the tile surfaces and the ground plane) are independent

of plate spacing and tend to reduce the X/2 variations in IF I. The external

tile reflections vary as the distance between the RCG coating and the

reflecting plate and thus reduce the X/2 variations due to the stronger plate-

to-plate reflections.

4.1.3 Without Ground Plane, Without TI'S Tile

Figures 17-19 arc measurements of I I" Las functions of d, for conical

horns B, D, and C, respectively, with the antenna ground plane removed and
the area behind the horn covered with an RF absorber to eliminate

extraneous reflections. Thai is, the antenna under test is a conical horn

without a ground plane.

As can be seen in figures 17-19, _/2 periodicity is apparent in the data

over the entire 20 cm plate separation distance; but now, the periodic wave

form has a sinusoidal shape with a peak-to-peak minimum variation of about

3 dB that is independent of d. Obviously, removing the ground plane from

13



the antenna system eliminates parallel plate waveguide effects. This can be

seen by comparing figures 17-19 with figures 5-7. The nearly constant dB-

ripple In IF l versus d for figures 17-19 was postulated [by Kreutel based on

his scalar diffraction theory model) as higher-order mode effects in the

throat of the horns In the absence of a ground plane. When the antenna

aperture is on a ground plane, the dominant secondary (second bounce)

reflection Is greatly Increased. Figures 20 and 21 are expansions of selected

regions within figures 17 and 19. respectively, where distances from 4 to 6

cm and 10 to 12 cm are shown with the expanded time base. ISince the

curves are monotonic, only one expanded time-base block is shown for each
of horns B and C.)

A comparison of figures 17- 19 shows thai: the larger phase taper

(_ = 125 °) produces I l" ]about 3 dB less than the smaller-taper cases,

whereas IF Iversus d for both figures 18 and 19 are almost identical.

4.1.4 Without Ground Plant;. With TPS Tile

For figures 22, 23, anti 24, the TI)S tile is placed between the conical

horn aperture and the reflecting plate. As before, there is a 0.160 in.

(0.406 cm) offset distance between the aperture plane and the tile surface.
The figures show the resultant IF [ as a fimction of distance to the reflecting

plate. The shape of the [ l" [ peaks are very similar to those when no tile is

used as seen in figures 17-19. Comparing figures 22-24 with figures 17-19,

particularly at the larger distance ranges, it is obvious that when the tile is

used the minimum [l" I is decreased (increasing the maximum radiation loss)

and the maxlnaum II" I is increased.

Figure 25 has an expanded distance scale similar to figure 21. A direct

comparison of figures 25 and 21 clearly shows the effects of the TPS tile on

the reflection coefficient when no ground plane is used.
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4.2 Tilt Measurements

4.2.1 With Ground Plane, Without TPS Tile

For non-tilt measurements, the radiating antenna was always aligned

with normal Incidence to the reflecting plate. This condition simulated

reflection characteristics from a reflective medium, such as an ionized

plasma, that would be normal to the boreslte of a forward sensing antenna

located In the stagnation region. It was expected, however, that due to

spacecraft small angle-of-attack motions, the ionized plasma could have

small angles of tilt referenced to the forward looking antennas. For the

reason stated above, laboratory reflection measurements were conducted

with the reflecting plate tilted with respect to the antenna. All tilt-

measurements were performed by rotating the reflecting plate about an axis
which was normal to and inlcrsecting the antenna boresite axis, while the

antenna was in a fixed position and the distance range was held constant.
The actual spacing (d) was deviated slightly about the nominal values given

•in the figures so that Ji" J [at zero tilt) was maximized. {This corresponds to

the peak values as shown in figures 5-7). For reflecting plate tilt angle

measurements on either side of 0° (the peak value for [ F 1]. the term used in

this report to describe ttm included tilt angle values of [F Ithat are 3 dB less

than peak, Is tilt width.

Figures 26-28 show ]l" Idata for four plate-separation distances for

antennas B, D, and C as the reflecting plate is rotated about the tilt axis.

These figures are for the horns mounted in a ground plane with their

effective diameters (De) indicated. The three figures show that peak [FI

near normal incidence is very sharp and narrow, with the -3 dB maximum

tilt widths extending from _+1.0 ° to _+2.0 ° at plate distances of 5 cm. Again,

comparing the three figures, the -3 dB till width increases slightly with

decreasing aperture [)hast'. deviation. For each horn the tilt width becomes

narrower as the range distance is increased, as is evident in the figures.
The distances and the values for II" I, as shown, are the same values of IF I

occurring in figures 5-7, respectively, for reflecting plate distances Of 5, 10,
15, and 20 cm.
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4.2.2 With Ground Plane, With TPS Tile

Figures 29-31 are physically the same configurations as shown in figures

26-28, except the TPS tile has been placed in a fixed position between the

ground plane and the reflecting plate, with the tile offset 0.406 cm from the

antenna aperture plane. The [r Ifor tllt measurements in the figures with
the TPS tile has a much different character than those shown without the

tile. In figures 29-31, although there are individual variations of 10 dB or

less within a + 7 °tllt angle change for each of the range distances,

essentially all of the Il" I(lata are contained within the -2.5 dB to -23 dB level.

In comparison, for tilt. angle changes of + 5 ° to + 7 °, as seen in figures 26-28
with no TPS tile. I I" I can decrease in value fr(ml - I0 dB to -25 dB as the

separation distance is increased only slightly. [Particularly, note range

distances of 15 and 20 em in these figures). This provides confirmation that

the use of the TPS tile sl)reads the cffeclive rcturn from the reflecting plate

while it reduces tlle sharpness of the peak returns at _./2 intervals. Also, a

comparison of figures 29-31 shows that the peaks of the I r Iresponse

around 0.0 ° tilt angle beconm more visible with decreasing aperture phase

curvature. Clearly, the TI'S tile has a nmjor effect on the characteristics of

the radiating system.

4.2.3 Without Ground l)lanc. Without TI'S "File

The magnitude of the rcfl(rction coeMcient for conical horns B, D, and C

without the ground phme an(I as a traction of reflecting plate tilt are shown

in figures 32, 33, and 34, respectively. The same distances, as shown in

sections 4.5 and 4.6 abovc, arc shown. II" [is nmximum at normal plate

incidence and decreases smoothly and gradually as tilt is increased. For

conical horn B with an aperture phase deviation of 125 °, the -3 dB tilt width

Is ± 8.5 ° at a separation distance of l0 cm and ±8 ° at a distance of 20 cm.

Conventional antenna pattern measurements provided by the manufacturer

of horn B show lg- and I-I-plane -3 dB beamwidths of 27.8 ° and 30.7 °,

respectively, ttorn-to-horn beanlwi(lth measurements, with no ground plane
used, confirmed the manufacturer's data. In comparison, for conical hom C

with an aperture phase deviation of 6% the -3 dB tilt width is _+10 ° at a

separation distance of l0 cm and ± 7.5 ° at a distance of 20 cm.
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4.2.4 Without Ground Plane, With TPS Tile

" Figures 35 and 36 (for conical horns D and C) with aperture phase

deviations of 22.5 ° and 6 °, exhibit an almost flat response for IF ]at plate

separation distances of 10, 15, and 20 cm. Data for conical horn B

(_ = 125 °) was not available for this particular data set. Comparing figures 33

and 34 (where there was no ground plane or TPS), with figures 35 and 36,

shows again the TPS spreading effect on the reflection coefficient as a

function of reflecting plate tilt.

5,0 Theoretical Models and Comparison with,Experimental Res..ults

Computer codes welt." available which can predict the RF refiecUon

levels or antenna mutual coupling effects for a CWG antenna mounted on a

ground plane and illuminating a parallel reflecting surface (ref. 7). These

theoretical models make certain assumptions that cannot be physically

modeled in a laboratory experimental setup. The theoretical model assumes

that the antenna has zero phase deviation across the aperture. In order for

an actual conical horn antenna to have zero phase deviation across the

aperture, the antenna would either have to be infinitely long or have a phase

correction lens placed in the aperture. The model also assumes that within

the antenna system, all surfaces, including the ground plane and the

reflecting plate, have infinite dimensions.

Figure 37 shows a theoretical prediction, using the CWG model, of the

magnitude of the rctlcction coefficient as a flmction of separation distance

for a 2.7-cm diameter circular waveguide antenna. The notations within the

figure describe the antenna systeln's characteristics.

The characteristics of conical horn C, with an aperture phase deviation

. of 6°, offer the closest comparison with the CWG model. A comparison of

the reflection coefficient magnitudes of figure 37 with those shown in figure

- 7 reveal good general agreement. The major difference between the two

sets of data is the character of the reflections occurring in the null regions
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between the _,/2 peaks, in these null regions, the experimental data contain

rapidly varying IF l with small distance changes while the CWG model results

are smooth and exhibit no rapidly varying fluctuations. This phenomenon

within the nulls is believed to be the result of the fact that the finite parallel

plates act as an open-circuited mismatched waveguide that produces

reflections with phase varying as the plate spacing is increased. Therefore,
the different results for the CWG model in the null areas appear to be due

mainly to the assumption of infinite transverse planes that cannot be

duplicated in the experiments.

Figure 38 compares maximum and minimum values of[ F [as a function

of discrete I)2/_. ranges for the three 2.2 _ conical horns. The respective

aperture phase deviations for the honls are also shown in the figure. For the
null areas of the experimental data, the average value of [F [is indicated. The

experimental results of both horn C and horn D agree well with the CWG
model.

The scalar diffraction theory near-field model, developed by Kreutel,

was available to predict the signal powcr returned to the MRIS receiver
from reflections in the antenna near-field. This model takes into account

the range to the reflecting surface (reflecting plate), the aperture diameter,

and the aperture phase deviation of a given conical horn. The model does

not account for the effects of the parallel plate waveguide formed by the

ground plane and rellecting plate. This near-field model approaches the
Frlls transmission equation or far-field equation near 2D2/_..

Figure 39 shows a comparison between the scalar diffraction theory

predictions and the experimental mcasurements for a conical horn antenna

(D = 2.74 ca; # = 125°). The experimental ineasurement results of IF[

versus d are the same as shown in figure 5. For the experimental

measurements, the conical horn was mounted on the ground plane, as

shown in figure 4(a). The scalar diffraction theory model, however, does not

account for ground plane effects. As is evident in figure 39, the diffraction

model predictions (shown by the heavy line) have values of IF [that are +3 dB

to +4 dB greater than the average null values of the experimental
measurements.
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Figure 40 is a comparison of the scalar diffraction theory predictions

and the experimental measurements for the conical horn shown in figure 39

• (D = 2.74 cm; _ = 125°}, but without a ground plane, The experimental

measurement results of I F Iversus d, as shown in figure 40, are the same as

• shown In figure 17. Figure 40 shows the good agreement, for values of IF

between the diffraction model predictions (shown by the heavy line} and the

average value of the experimental measurements.

6,0 Conclusions

Measurements have been made of the magnitude of the reflection

coefficient occurring in an experimental model antenna system. The

laboratory system was c()mposed of 2.2 _ (tiameter conical horns having a

range of aperture phase deviations mounted on a ground plane and

Illuminating a parallel fiat metal plate through an intervening TPS tile, The

measurements were performed through a range of plate separation

distances and plate tilt angles.

The major emphasis of tile measureIncnts described in this report was

to verily theoretical analyses in suPt)ort of development of the MRIS

instrument. The general experhnental goals are described in the following

p,'u'agraphs.

The measurement resulls were used to substantiate near-field and far-

field transmission efficiency levels for a MRIS-type propagation path. The

various conical horns used in this experiment were chosen to evaluate the

Influence of aperture phase deviation on the transmission efficiency.

Measurement results were also used to assess the impact of the AFE

stagnation-region TPS tile on the transmission efficiency. The various

transmission efficiency evaluations using the experimental model have been

successful and will be discussed in a future publication.

Measurement results indicate, for the same physical conditions, that
there are minor differences in If" If or the conical horns with the smaller
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aperture phase deviations. The horn with an aperture phase deviation of
125 ° consistently exhibited lower IF [ than similar measurements for the

other horns.

• Based on these experimental results, the MRIS design requirement to

radiate through the TPS tile structure appears to be acceptable. When the

TPS tile is part of the antenna system, the severe IF [fluctuations at _./2

range intervals are reduced and the effective antenna beam is broadened.

These effects are primarily due to the presence of the RCG coating which

gives rise to a combination of internal and external reflections. Although the

effects identified do not indicate a problem, the overall effect of the TPS on

the ability of the MRIS system to measure distance can not be determined

based on the data presented here, and the issue continues to be studied.

The results of this study were used to ascertain the effects of the TPS

tile on MRIS design specifications such as: signal-to-noise ratio, signal-to-

interference ratio, and receiver dynamic range. Insight and confidence was

provided by these continuous wave ranging measurement results. These

experimental results were supportive of a parallel laboratory measurement

effort to measure the time domain properties of a MRIS-type propagation

path. Finally, the laborat(n3z measurements indicate the general validity of

the CWG theoretical model for predicting the general behavior of the

parallel plate geometry. CWG predicted the _./2 peaks and the depth of the

troughs. CWG did not predict {nor was it expected to predict) the ripple

effects occurring in the troughs. The laboratory measurements also indicate

the general validity of the scalar diffraction theory model in the absence of

parallel plate geometry. The scalar diffraction theory model predicted the

general behavior of the mean I I" Iversus d, The scalar diffraction theory

model did not predict the k/2 peaks or the ripple effect on IF I as a function

of d. The experimental measurements tied the CWG theoretical model

results and the scalar diffraction theory model results together. The

reasonable agreement between theoretical and experimental models

provided increased confidence in the MRIS design.
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Table [. 2.2-X Diameter conical-horn antenna characteristics, electrical and physical

Aperture Effective Aperture Aperture Diameter, Da Far Field Range, cm
Antenna Phase-Deviation Diameter, De, (No groundplane) (2D2/?,)

Identification (Actual) (Mounted on groundplane)
Series

X I degrees _, cm inches X cm inches De Da

B 0.35 125.0 2.2 2.74 1.08 2.03 2.54 1.00 12.0 10.3

D 0.06 22.5 2.1 2.62 1.03 2.03 2.54 1.00 1! .0 !0.3

C 0.02 6.0 2.1 2.57 1.01 2.03 2.54 1.00 10.5 10.3
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from ground plane
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Fixed mount Distance positioner m _ positioner

Stable table

Figure 1. Simplified baseline experimental-system configuration.
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Figure 2. 24GHz reflectometer measurement circuit.
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Figure 3. Dimensional characteristics of TPS test tile.



Ground plane
f.__l _f- 45.7 cmx 45.7cm

De = 2.74cm _ De = 2.62cmI

Taper length, --_ .,I(--- Taper length, --),-I
1.22cm 5.8cm

(a) Conical horn B; (I)= 125° (b) Conical horn Di._)= 22.5°

---Ground plane Inifinite --_

45.7cm x 45.7cm dimensions_

............ liiiiiiiZii!iiiiiiiiiiiiiii!i!iiiiii!iiiiiii!iiiiiiii!i_ J ......;_ L_ ._ ..... :: De=2.57cm ii_iill D=2.7cm

L____ Taper length,
21.7cm

(c) Conical horn C; (I)= 6° (d) CWG antenna; (D= 0'_

Figure 4. Relative physical-comparison between experimental and
theoretical antenna systems.
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Figure 5. It-'las a function of plate-separation distance for a 2.74 cm diameter horn with 125°
aperture phase taper.
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Figure 6. I['1as a function of plate-separation distance for a 2.62cm diameter horn with 22.5°
aperture phase taper.
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Figure 7. IFI as a function of plate-separation distance for a 2.57cm diameter horn with 6°
aperture phase taper.
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Figure 8. IF1as a function of range for three plate-separation distances for a 2.74 cm
diameter horn; with ground plane, without TPS tile, conical horn B, _ = 125°.
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Figure 9. IT] as a function of range for three plate,separationdistances for a 2.62 cm
diameter horn;with ground plane,without TPS tile, conical horn D, (I)= 22.5°.
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Figure 10. Irl as a functionof rangefor three-plateseparationdistancesfor a 2.57cm
diameterhorn;withgroundplane,withoutTPS tile, conicalhorn C, (I)= 6°.
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- With TPS tile
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Figure 11. IF[ as a function of plate-separation distance for a 2.74 cm diameter horn.
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Figure 12. I1-'1as a function of plate-separation distance for a 2.62 cm diameter horn.
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Figure 13. II_las a function of plate-separation distance for a 2.57 cm diameter horn.
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Figure 14. IFf as a function of range for three plate-separationdistances for a 2.74 cm
diameter horn;with ground plane, with TPS tile, conical horn B, _ = 125°.
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Figure 15. Ir'l as a functionof rangefor threeplate-separationdistancesfor a 2.62 cm
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Figure 16. Ir'l as a functionof rangefor threeplate-separationdistancesfor a 2.57cm
diameterhorn;withgroundplane,withTPStile, conicalhornC, _ = 6°.
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Figure17_ fFI as a function of separation distance between the antenna-aperture plane and a reflecting
plate for a 2.54 cm diameter horn.
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Figure 18. IFI as a function of separation distance between the antenna-aperture plane and a reflecting
plate for a 2.54 cm diameter horn.
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Figure 19. IFI as a function of separation distance between the antenna-aperture plane and a reflecting
plate for a 2.54 cm diameter horn.
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Figure 20. IF[ as a function of separation distance between the antenna-aperture plane
and a reflecting plate for a 2.54 cm diameter horn.
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Figure 21. IFI as a function of separation distance between the antenna-aperture plane
and a reflecting plate for a 2.54 cm diameter horn.
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Figure 22. IF] as a function of separation distance between the antenna-aperture plane and a reflecting
plate for a 2.54 cm diameter horn.
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Figure 23. jl"l as a function of separation distance between the antenna-aperture plane and a reflecting
plate for a 2.54 cm diameter horn.
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Figure 25. I['l as a function of separation distance between the antenna-aperture plane
and a reflecting plate for a 2.54 cm diameter horn.
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Figure 24. Irl as a function of separation distance between the antenna-aperture plane and a reflecting
plate for a 2.54 cm diameter horn.
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Figure26. Irl as a functionof reflectingplatetilt anglefor four plate-separation
distancesfor a 2.74cmdiameterhorn.

48



-0--

n

,IP

_ Tilt width
_
- d = 5.0cm + 1.5°

-10 --

- '_ d = 10.0cm +1.0 °
m

B

-15 -- d=15.0cm L+0.5 °

Irl, dB ,

d =20.0 cm + 0.25°

-20 --

-25 --

-30 -- Conical horn D:
m

(F= 22.50
With ground plane
Without TPS tile

m

-15 -10 -5 0 5 10 15

Reflecting plate tilt angle, degrees

Figure 27. I['1as a function of reflecting plate tilt angle for four plate-separation
distances for a 2.62 cm diameter horn.
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Figure 28. II-'las a function of reflecting plate tilt angle for four plate-separation
distances for a 2.57 cm diameter horn.
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Figure 29. Irl as a function of reflecting plate tilt angle for four plate'separation
distances for a 2.74 cm diameter horn.
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Figure 30. II'1as a function of reflecting plate tilt angle for four plate-separation
distances for a 2.62 cm diameter horn.
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Figure 32. IYIas a function of reflecting platetilt angle for four aperture-plane
to reflecting-plate separation distances for a 2.54 cm diameter horn.
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Figure 33. I['1as a function of reflecting plate tilt angle for four aperture-plane
to reflecting-plate separationdistances for a 2.54 cm diameter horn.
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Figure34. II"las a functionof reflectingplatetilt anglefor fouraperture-plane
to reflecting-plateseparationdistancesfor a 2.54cmdiameterhorn.
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Figure35. I['1asafunctionof reflectingplatetilt angle for fouraperture-plane
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Figure36. ]1"]as a functionof reflectingplatetilt anglefor fouraperture-plane
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